Mutant fusion proteins with enhanced fusion activity promote measles virus spread in human neuronal cells and brains of suckling hamsters.

نویسندگان

  • Shumpei Watanabe
  • Yuta Shirogane
  • Satoshi O Suzuki
  • Satoshi Ikegame
  • Ritsuko Koga
  • Yusuke Yanagi
چکیده

Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunoglobulin g antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response.

Antibodies to viral surface glycoproteins play a crucial role in immunity to measles by blocking both virus attachment and subsequent fusion with the host cell membrane. Here, we demonstrate that certain immunoglobulin G (IgG) antibodies can also enhance the entry of measles virus (MV) into monocytes and macrophages. Antibody-dependent enhancement of infectivity was observed in mouse and human ...

متن کامل

Measles Fusion Machinery Is Dysregulated in Neuropathogenic Variants

UNLABELLED Paramyxoviruses, including the human pathogen measles virus (MV), enter host cells by fusing their viral envelope with the target cell membrane. This fusion process is driven by the concerted actions of the two viral envelope glycoproteins, the receptor binding protein (hemagglutinin [H]) and the fusion (F) protein. H attaches to specific proteinaceous receptors on host cells; once t...

متن کامل

Glycoprotein targeting signals influence the distribution of measles virus envelope proteins and virus spread in lymphocytes.

We previously demonstrated the presence of tyrosine-dependent motifs for specific sorting of two measles virus (MV) glycoproteins, H and F, to the basolateral surface in polarized epithelial cells. Targeted expression of the glycoproteins was found to be required for virus spread in epithelia via cell-to-cell fusion in vitro and in vivo. In the present study, recombinant MVs (rMVs) with substit...

متن کامل

A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain.

Measles viruses (MV) can be isolated from the brains of deceased subacute sclerosing panencephalitis patients only in a cell-associated form. These viruses are often defective in the matrix (M) protein and always seem to have an altered fusion protein cytoplasmic tail. We reconstituted a cell-free, infectious M-less MV (MV-DeltaM) from cDNA. In comparison with standard MV, MV-DeltaM was conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2013